Chebyshev Collocation Method for Shallow Water Models with Domain Decomposition

نویسندگان

  • Yung-Chieh Chang
  • Hung-Chi Kuo
  • Ming-Chih Lai
چکیده

The spectral methods seek the numerical solutions by a set of known polynomials. The main advantage of using spectral methods for solving atmospheric problems is the high efficiency and conservations of important quadratic quantities such as kinetic energy and enstrophy. Namely, we can get very high accuracy through the exponential convergence. The conservation of the quadratic quantities are important to model the turbulence under strong rotation and stratification. In this paper, we introduce the domain decomposition method to speed up the Chebyshev collocation method. The domain decomposition is to divide the domain into many sub-domains to run the computation in parallel and to exchange the information through the sub-domain boundaries during the time integration. We implement the domain decomposition Chebyshev collocation method with overlapping the subdomains in one grid spacing interval for 1-D tests such as advection, diffusion and inviscid Burgers equations. We show the exponential convergence property and error characteristics in these tests. In a more realistic atmospheric modeling, we study the spectral method with 2-D shallow water equations. The domain decomposition results compared favorably with that of the single domain calculations. Thus, Chebyshev domain decomposition method may be an efficient alternative method for the atmospheric/oceanic limited area modeling. ∗Department of Atmospheric Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan 0

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified Chebyshev pseudospectral DD algorithm for the GBH equation

In this paper, a Chebyshev spectral collocation domain decomposition (DD) semidiscretization by using a grid mapping, derived by Kosloff and Tal-Ezer in space is applied to the numerical solution of the generalized Burger’s–Huxley (GBH) equation. To reduce roundoff error in computing derivatives we use the above mentioned grid mapping. In this work, we compose the Chebyshev spectral collocation...

متن کامل

Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder

In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...

متن کامل

Chebyshev-Legendre Spectral Domain Decomposition Method for Two-Dimensional Vorticity Equations

We extend the Chebyshev-Legendre spectral method to multi-domain case for solving the two-dimensional vorticity equations. The schemes are formulated in Legendre-Galerkinmethod while the nonlinear term is collocated at Chebyshev-Gauss collocation points. We introduce proper basis functions in order that the matrix of algebraic system is sparse. The algorithm can be implemented efficiently and i...

متن کامل

A Fourier-chebyshev Collocation Method for the Shallow Water Equations including Shoreline Runup

A method for the shallow water equations governing wave motions in the nearshore environment is presented. Spatial derivatives contained in these equations are computed using spectral collocation methods. A high-order time integration scheme is used to compute the time evolution of the velocities and water surface elevation given initial conditions. The model domain extends from the shoreline t...

متن کامل

A Fast Poisson Solver by Chebyshev Pseudospectral Method Using Reflexive Decomposition

Poisson equation is frequently encountered in mathematical modeling for scientific and engineering applications. Fast Poisson numerical solvers for 2D and 3D problems are, thus, highly requested. In this paper, we consider solving the Poisson equation ∇2u = f(x, y) in the Cartesian domain Ω = [−1, 1] × [−1, 1], subject to all types of boundary conditions, discretized with the Chebyshev pseudosp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009